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ABSTRACT

Location measurements from people and vehicles often have long
temporal gaps between them. However, we would still like to reason
about location behavior during these gaps. This paper presents
a new method for filling these gaps that is both principled and
data-driven. Unlike the most common method, linear interpolation,
our method explicitly represents the location uncertainty in the
gaps with probability. It also learns from actual mobility data. We
introduce bridgelets, which are small, spatio-temporal, maximum
entropy clouds that model spatial uncertainty over small gaps. Using
actual trajectories, we combine bridgelets into probabilistic bridges
that are specific to absolute start and end locations on the map.
The resulting bridges give the probability of visiting certain in-
between locations given only the start and end points. Using real
trajectory data, we compare our maximum entropy bridges to a
popular baseline to show how our approach is much more accurate.
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1 INTRODUCTION

Location trajectories of moving people, animals, and objects are
often sparsely sampled due to concerns about privacy, battery life,
and storage capacity. However, it is important to be able to reason
about what happens between location measurements, such as in-
ferring a visit to a certain location or understanding the probability
of disease exposure.

The most common method for inferring locations between mea-
surements is linear interpolation, assuming a constant speed. But
when the known endpoints are far apart, this assumption of straight
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line, constant speed becomes unrealistic, given the nature of nor-
mal movement in the world. Other deterministic interpolants are
no better, because we have no reason to assume motion generally
follows any particular non-straight curve.

A more promising approach is to explicitly represent the inherent
uncertainty in location between measurements. In the geospatial
field, this has been expressed with beads [3, 6], which represent all
feasible locations that could be visited between two timestamped
points, given a maximum speed. While beads give just a feasible
visit region, some researchers in animal tracking advocate for the
Brownian bridge [5], which expresses the uncertain in-between be-
havior as a time-varying, spatial probability distribution. Similarly,
a Gaussian process can be used in the same way [11]. However,
beads, Brownian bridges, and Gaussian processes are insensitive to
ground features such as paths, roads, terrain, and obstacles, effec-
tively modeling motion as free movement on a featureless plane.
The Brownian bridge has one free parameter, the diffusion coeffi-
cient, that can be trained from mobility data [7], and the Gaussian
process has a handful of parameters and a kernel function to choose.
These limited parameterizations are inadequate to account for the
rich and varied motion induced by personal preferences and path
constraints that change from place to place.

This paper introduces a new type of mobility bridge that simul-
taneously accounts for the uncertainty between measured points
and learns from motion data. The technique works on a spatial
grid, discretizing each location point to a spatial cell (100 m X 100 m
in our case). A single trajectory is characterized by a sequence of
timestamped cells, where the timestamps are also discretized into
short time periods (5 s in our case). Between each pair of tempo-
rally adjacent cells, we insert a maximum entropy bridgelet. This
bridgelet spans the space and time between two cells with a spatial
cloud of all feasible paths between the two cells, constrained only
by the time span between the cells. The bridgelet is “maximum
entropy” because it makes no assumptions about the paths between
the two cells, and each path has the same, uniform probability. This
bridgelet-augmented trajectory represents a candidate bridge for
any two points that share this trajectory’s start cell, end cell, and
discrete time span. If there are other training trajectories with the
same start, end, and time span, we show how we can compute the
mean of their associated bridges to make a final, learned bridge.
The unique advantages of this approach are that it makes no prior
assumptions about behavior between measured points (i.e. using
maximum entropy bridgelets) and that it learns from actual mobil-
ity data to reduce the uncertainty in a principled way (i.e. taking
the mean of the bridges from similar training trajectories). In the
end, for each start cell, end cell, and time span, we have a bridge
that properly represents both the spatial uncertainty and observed
behavior between the two locations.
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As we will show, the advantages of our approach to trajectory
completion are:

e Initially unbiased representation of feasible paths via maxi-
mum entropy

e Bridges properly blended with mobility data for realistic
representation of movement constraints and preferences

e Bridges maintain non-zero probability of feasible location
visits even if they have not been seen in data

e Variety of probability distributions from bridges, including
visit probabilities and dwell probabilities

2 RELATED WORK

The problem of inferring the location of a moving object between
measured points in time has received attention in the research liter-
ature. The most commonly used solution to this problem is simply
linear interpolation. For longer distances on the globe, researchers
have used great circle interpolation. In each case, the moving object
is assumed to move at a constant speed along the most direct path
between the two endpoints. This has the advantage of simplicity,
but does not admit wandering, turns, nor changes in speed. For a
discrete grid in (x,y), as we use, a grid traversal algorithm such
as [1] can be used to identify all the intersected grid cells between
the two endpoints.

If linear interpolation gives the most constrained specification
of the unknown path between two points, the “lifeline bead” [3, 6]
gives one of the most liberal. The lifeline bead computes every
possible location the object could have been between the two end-
points given a specified maximum speed and the traversal time. In
spacetime, the region of possible visits is the intersection of two
half-cones. For an entire trajectory of multiple points, lifeline beads
are strung together to form a necklace. A lifeline bead does not
specify any probability of visiting a given (x, y, t), but instead gives
the points that could (and implicitly could not) be visited in light
of the endpoints, traversal time, and maximum speed.

The previous two approaches are not probabilistic. A more so-
phisticated, probabilistic approach is the Brownian bridge. It is a
conditional probability density function of location, describing the
distribution of location as a function of time between two known
points. The Brownian bridge is based on Brownian motion, or
Wiener process, which classically describes a particle undergoing a
random walk. Practically, a Brownian bridge says that the location
of the particle is a time-varying two-dimensional Gaussian distri-
bution whose variance is zero at the endpoints and maximum in
the middle. A readable explanation of the Brownian bridge, applied
to animal tracking, appears in the paper by Horne [5]. The Brown-
ian bridge has been shown to be a poor representation of human
mobility [7].

The Gaussian process is also a viable approach to creating a
spatial probability distribution between measured points. This ap-
proach was recently used by Nguyen et al. [11] for understand-
ing the information content of sampled trajectories. Similar to the
Brownian bridge, a Gaussian process produces a time-varying, con-
tinuous probability distribution over location.

The work by Emrich et al. [2] and Niedermayer et al. [12] ad-
dresses how to do probabilistic queries on uncertain moving object
data that have been subjected to a Markov model. This is similar to
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our proposed approach in that time and space are both discretized.
While the referenced work gives a deep analysis of the Markov
model and a sophisticated query structure around this model, the
intellectual overlap with our work is the Markov model. Their work
does not concentrate on the realism nor accuracy of the model,
but rather on the use of the probabilistic model for queries. Using
techniques in the paper, the Markov model could be adapted to
compute statistics on in-between behavior as we do in this paper
with our maximum entropy model.

The "random walk bridge" is a known mathematical entity similar
to what we study [4]. It represents a sequence of moves in discrete
time and space. The random walk bridge incorporates random
moves at every step, while our bridgelets constitute a collection of
deterministic walks between two discrete points, and we assume
that one was chosen at random.

Out work is unique in that it employs the maximum entropy
concept to model the inherent uncertainty between measurement
points and then blends real trajectory data in a principled way to
reduce the uncertainty. By explicitly enumerating all possible paths
between measured points, we can compute a rich variety of useful
statistics, such as visit probabilities and dwell time probabilities.

3 MAXIMUM ENTROPY BRIDGELETS

This section introduces the new concept of maximum entropy
bridgelets, which we will refer to as just bridgelets. A bridgelet
is a collection of all possible routes between two endpoints. A
bridgelet is defined on a lattice graph, which we describe next.

3.1 Lattice Graph Representation

A lattice graph is a graph G = (V, E) whose vertices V are centered
on shapes in a grid that tile a part of 2D space. We use a square
grid graph, an example of which appears in Figure 1. Each square is
represented by a vertex of the graph, and each vertex has undirected
edges in E connecting to the vertices of its square’s four neighbors,
as well as a self-loop back to itself. The edges represent how an
entity can move from cell to cell on the graph. A “walk” in this
graph is represented by a sequence of vertices vgv;...oT, where the
edges between the vertices are implied, and it can begin and end
at the same vertex. The temporal aspect of the walk is that there
is a move along an edge every time step AT. Because the graph
includes self-loops for each vertex, the walk may include adjacent,
repeated vertices for any number of time steps. In our experiments,
AT =5s.

3.2 Bridgelets

A bridgelet is the set of all distinct walks between two vertices in
time T. T is an integer number of time steps. Bridgelets are shift-
invariant, so they can all be represented by the same starting vertex
at integer grid coordinates (0, 0) and time 0. There is a different
bridglet for the integer coordinates of each end cell (X, Y) and each
T. Each bridglet is thus distinguished by its endpoint and temporal
duration, denoted by Wx y 1.

Two walks in a bridgelet are considered distinct if there is any
difference in their ordered list of vertices vgvy...01. There are closed
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Figure 1: The black grid is part of the standard 100m MGRS
grid. The blue graph has nodes at the center of each grid cell
and edges for four-connected neighbors and self-loops.

form solutions for the number of “lattice paths” between two ver-
tices in a square grid lattice graph [13], but lattice paths are re-
stricted in various ways, such as disallowed from crossing them-
selves, no self-loops, and only making moves in the north or east
directions. Mihailovs gives a formula (11.1) for the number of walks
on a lattice graph like ours, except it does not allow for self-loops [9].
We are not aware of a closed form solution to count the number of
walks as we define. We rely on an algorithm, described below, to
generate bridgelets.

We are ultimately interested not in the bridgelet’s constituent
walks, but in the bridgelet’s statistics over the visited vertices be-
tween the two endpoints. For statistics, we use maximum entropy
bridgelets where each constituent, distinct walk in the bridgelet
has equal probability. This represents our unbiased uncertainty
about the actual path a moving object would choose between two
locations. We will show subsequently how we combine bridgelets
based on actual trajectory data to build full, probabilistic bridges
that reflect the actual paths in the training data.

For practical applications, we would like to know the probability
that a walk passes through a certain vertex, denoted as P(v|Wx y,T),
where v is the vertex in question and Wx y r is the bridgelet. We
can compute the visit probability by simply counting, since each
constituent walk has equal probability. The total number of walks
is [Wx y,r|, and the total number of walks passing through vertex
v is [Wx y rlo. Thus

[Wx yTlo

P(o|Wx,y,T) = Wy 1]

®
Visit probabilities may be important to assess the probability of
exposure to something, such as a physical sign, crime, or commu-
nicable disease.

Similarly, we can compute the probability of visiting a given
vertex v for a given integer dwell time d. The number of walks that
meet this condition is [Wx,y 1|, 4, so the dwell time probability is
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IWx,v,7lo.d
Wx,y,7l
Dwell probabilities may be important to assess the probability of

lingering at a place such as a business or park.

By computing all distinct walks in a bridgelet, we can easily
compute these and other probabilities, such as the probability of
visiting two more more given vertices or the probability of visiting
a given vertex multiple times. In our experiments, we concentrate
on the simple visit probabilities of Equation 1.

P(v,d|Wxy,r) = (2

3.3 Example Bridgelet

As an illustration, we present an example bridgelet and some of its
probabilities. The example grid is shown in Figure 2. The bridgelet
starts at the vertex in the origin cell “a” and ends at the vertex in
cell “f” where (X,Y) = (2,1). We arbitrarily set the duration of the
example bridgelet to T = 4, meaning it took four steps to get from
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a” to “f”. This bridgelet would be denoted as Wx y 1 = Wy 1 4.

Figure 2: The example bridgelet, W, ; 4, starts at the vertex in
cell “a” and ends at the vertex in cell “f”, taking T = 4 time
steps. Because the graph is four-connected, only horizontal
and vertical moves are allowed, not diagonal. The resulting
visit probabilities are shown on the right.

The bridgelet itself is shown in Table 1. This is a list of all the
possible walks between the end points in the allotted time. Note
that a bridgelet with a length of T consists of T moves along the
graph’s edges. In this example, there are 12 constituent walks, all
with the same start and end. The maximum entropy condition is
the same as saying each row in the table has an equal probability
of being the actual walk that was chosen by the moving object.

l start l l l l end ‘
a a b c f
a b b c f
a b c c f
a b c f f
a a d e f
a d d e f
a d e e f
a d e f f
a a b e f
a b b e f
a b e e f
a b e f f

Table 1: The example bridgelet W; 1 4 consists of these 12
possible walks between vertex “a” and “f” on the grid in
Figure 2. The walks are grouped by their shape on the grid.
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From the list of walks in Table 1, it is simple to count the number
of walks that visit each possible cell. These counts give rise to the
visit probabilities in Figure 2 and Table 2. These probabilities are
computed from Equation 1, where |[Wx y 7| = |[W2, 14| = 12. Note
the pleasing result that the probability of visiting the start and end
vertices is 1.0 regardless of which walk may have been chosen.

count of ..
vertex walks with VISIF .
vertex probability

a 12 1.00
b 8 0.67
[¢ 4 0.33
d 4 0.33
e 8 0.67
f 12 1.00

Table 2: These are the visit probabilities for the cells in the
example bridgelet W5 1 4.

The dwell probabilities are shown in Table 3. Each row represents
one vertex and one dwell time, and the probabilities are computed
from the counting technique in Equation 2. Note that the marginal
probabilities work out between the dwell probabilities in Table 3
and the visit probabilities in Table 2. That is

P(o|Wx,y.1) = ). P(0,d|Wxy1)
d>0
because d = 0 indicates no visit.

count of
walks with dwell
vertex dwell e
vertex and probability
dwell
a 0 0 0.00
a 1 9 0.75
a 2 3 0.25
b 0 4 0.33
b 1 6 0.50
b 2 2 0.17
c 0 8 0.67
[ 1 3 0.25
[¢ 2 1 0.08
d 0 8 0.67
d 1 3 0.25
d 2 1 0.08
e 0 4 0.33
e 1 6 0.50
e 2 2 0.17
f 0 0 0.00
f 1 9 0.75
f 2 3 0.25

Table 3: These are the dwell probabilities for the cells in the
example bridgelet W, ; 4 from Equation 2.
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3.4 Computing Bridgelets

We compute bridgelets of duration T by programmatically gener-
ating all possible walks of length T. Given the connectedness of
our graph, there are five possible ways to move from a vertex: the
four connected neighbors and the self-loop. In a walk of length T,
there are T different moves along the edges. Thus it is convenient
to index all possible walks of length T by a base-5, T-digit whole
number. We can arbitrarily assign move directions to each base-5
digit, where our assignments happen to be 0 = stay, 1 = east,
2 = north, 3 = west, and 4 = south. There are then 57 distinct
possible walks of length T.

Since bridgelets are not sensitive to features on the ground nor
measured movement patterns, they are shift-invariant in both space
and time. We arbitrarily say each bridgelet starts at an origin vertex
with integer coordinates (0,0) and time 0. As we index through
all the possible walks of length T, we compute the endpoint v of
each computed walk and append it to the list of walks in Wy =0 o, 1>
where 99 = 0 indicates the origin vertex. In actual practice, we
do not even keep the list of walks, but instead just accumulate the
relevant counts so we can, in the end, compute the visit probabilities
from Equation 1.

Computing bridgelets this way is relatively slow. We computed
bridgelets for T € {1, 2, ...,15}. At T = 15, there are 515 ~ 3.05% 1010
distinct walks. There are likely efficiencies to exploit that we have
ignored, such as spatial and temporal symmetries of the bridgelets.

4 FROM BRIDGELETS TO BRIDGES

A single bridgelet describes the possible routes between two loca-
tions. If we have a sequence of multiple locations, i.e. a trajectory,
we can concatenate bridgelets to form a full bridge along the whole
sequence and compute statistics along the whole sequence.

4.1 Bridges

We represent the trajectory as the vertices v102...05y with corre-
sponding grid cell coordinates (Xj, Y;) and integer timestamps
T;, where T; > T;—1 for temporal order. This is illustrated in Fig-
ure 3. There is a bridgelet W; associated with each temporally ad-
jacent pair of vertices. These bridgelets are shifted versions of the
zero-based bridglets in Section 3. We introduce a shift operator
EX YT that takes a zero-based bridgelet and shifts it such that its
starting coordinates are (X,Y) and its starting time is T. Then
w; = XY Ti WX, 1 —X;,Yis1—Y;, Ty, ~T;- The full bridge then becomes
W1Ws...Wn_1, as shown in Figure 3.

4.2 Bridge Visit Probabilities

We are interested less in the bridge itself than in its statistics. For
the purposes of this paper, we are particularly interested in the
visit probabilities of the bridge induced by the sequence of points.
For a vertex v, we want to compute its visit probability over the
sequence of bridgelets, i.e. P(v|WyWa...Wn_1). Each bridgelet W;
gives independent visit probabilities P(v|W;) as computed with
Equation 1. The probability of not visiting vertex v on bridgelet
W; is 1 — P(v|W;). Since these probabilities are independent, the
probability of never visiting v over the whole bridge is ]—]g Il (1-
P(v|Wj;)). Thus the visit probability is
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Figure 3: A full bridge on a sequence of points v; consists of
a combination of bridgelets W;.

N-1
P(o|WiWe...Wy—1) =1~ | | (1~ P(o|W))) 3)

i=1

4.3 Example Bridge

To convey the building of a bridge from bridgelets, we present an ex-
ample, illustrated in Figure 4. Here the six (X;, Y;, T;), i = 1...6 trajec-
tory points are (0, 0, 0), (5,4, 12), (12, 4, 22), (15, 0, 30), (9, 0, 40), (9, 7,
The corresponding bridgelets are
Wi = B0l v v,y - = EY Y Wag10 = Wag
Wp = EX oW vy, 1y, = B W10
Wy = BV B Wy x vy, 1-m = EPS2Wa g
Wy = EXe 0 liwse v vy, 1o, = BP9 Wog 10

o Wy = EXo Wy vy v 11 = E200Wo 712

In Figure 4, the first five images depict the visit probabilities
of the five shifted bridgelets, each spanning a pair of temporally
adjacent points in the full trajectory. The last image in the figure
shows the visit probabilities combined using Equation 3. Note that
the visit probabilities of the trajectory’s measured points remain
1.0, as expected. This example trajectory crosses itself, and the
visit probability at the crossing point is correspondingly high, even
though there is no measurement there.

The example in Figure 4 illustrates an advantage of this method
over a traditional machine learning approach. The constituent
bridges of a trajectory represent all possible paths between the mea-
surement points, even if those paths are never observed in training.
This allows us to tolerate minimal, sparsely sampled training data
while still maintaining the possibility of physically reachable paths
that move to cells not visited in training.

4.4 Combining Bridges

From the training data, we may see several trajectories with the
same start cell, end cell, and temporal duration T. Each of these
leads to a bridge and associated visit probabilities on the grid, as
described above. We combine the visit probabilities of these similar,
single-trajectory bridges into an aggregate bridge by taking the
mean of the visit probabilities in spatially corresponding cells. This
has the effect of representing all the observed behaviors for this set
of similar trajectories. Figure 5 shows an example of aggregating
the visit probabilities of five bridges (each composed of bridgelets)
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into an aggregate bridge. Each constituent bridge has the same
start and end cell as the others, and these two cells maintain a visit
probability of 1.0 in the aggregate bridge.

5 EXPERIMENTS

This section describes our experiments on trajectory data from peo-
ple, showing how our bridges perform compared to other bridges
for inferring in-between locations. Laying out bridges on real mo-
bility data means the combined bridges will represent actual routes
that people use, which implicitly accounts for route preferences
and physical obstacles.

5.1 Experimental Data

Our trajectory data came from Safegraph, which is a company
that aggregates and sells anonymized, personal location data. Each
record in their data has a pseudonymous ID indicating the user, a
timestamp, and a latitude/longitude measurement. For computing
our bridges, we used data from the first week of April, 2022 in
the Seattle region described below. After eliminating unsuitable
trajectories, we used data from 1,727,763 different users. Since our
computed bridgelets do not go beyond T = 15, we split trajectories
at temporal gaps larger than 15 X AT = 15X 55 = 75s.

We discretized space with the standard Military Grid Reference
System (MGRS) [14]. This grid of square cells covers the earth,
with geographic offsets to account for the planet’s shape. It offers
multiple square cell sizes, and we used 100 m X 100 m. Centered on
the downtown of Seattle, Washington USA, our grid subset covered
approximately 235 km? on an approximately square grid of 154x153
cells. The coverage area is shown in Figure 6, and a close-up of the
grid cells is shown in Figure 7.

We discretized time into AT = 5s increments. Thus for every
continuous time span ¢ in seconds, the discretized, integer time
spanis T = L%J

After discretizing the trajectories, each trajectory consists of
a time-ordered list of grid cells and discrete time stamps. Tempo-
rally adjacent grid cells in a trajectory can be identical. From a
discrete training trajectory, we extract all possible temporally adja-
cent sub-trajectories of at least three cells to enhance our bridge
computations. For example, if a trajectory has, in order, grid cells
[a,b,c,d], we trained with the original trajectory along with [a,b,c]
and [b,c,d]. We do not train with trajectories of only one or two
cells. A two-cell bridge is just a bridgelet. Using subtrajectories, we
trained our model with 79,452,051 total trajectories.

5.2 Bead Baselines

We test our proposed bridges against two bead baselines. Our basic
bead is a bridge that posits a possible visit to every cell that is acces-
sible in time T, starting at point (X3, Y1) and ending at (X, Yn).
This is the same definition of the endpoints of our bridge that we
defined in Section 4.1. The resulting set of accessible grid cells is
approximated by an ellipse, and we assign a visit probability of 1.0
to each cell inside the ellipse.

The other bead, the "learned bead", gives a visit probability of
1.0 to every nonzero point in our proposed bridges. That is, it takes
the visit probabilities from our proposed bridges and assigns a visit
probability of 1.0 wherever the learned visit probability is non-zero.
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(e) Bridgelet 5: W

(f) Bridge from five bridgelets

Figure 4: The visit probabilities from five bridgelets combined into a single bridge. The endpoints of the bridgelets represent
sampled points of a trajectory. The bridgelets were combined into the full bridge with Equation 3. The white cells at the

bridgelets’ endpoints have a visit probability of 1.0.

This makes a more realistic bead, because it is informed by the
training data.

5.3 Suitability of Continuous PDF Bridges as
Baselines

Two obvious candidates for computing visit probabilities are the
Brownian bridge [5] and Gaussian process [10]. Given two points
in time and two locations, each of these gives a bridge as a contin-
uous probability distribution as a function of time, i.e. (x(2), y(t)) =
x(t) ~ N(p(t),=(t)), where x(t) is the time-varying two-dimensional
location whose probability distribution is normally distributed with
time-varying mean and covariance.

We define visit probabilities on a discrete grid, and we can use
the distribution for x(#) to compute the probability of being inside
a grid cell whose corners at (Xmin, Ymin) and (Xmax, Ymax) as

Ymax Xmax
p= [ [ Nl 30)dxdy

min

This integral results in a time-varying erf() function giving the
probability p(t) € [0, 1] of being inside the cell as a function of
time, illustrated in [8] for the Brownian bridge. However, there is
not a clear way to go from p(t) to a scalar visit probability over
a discrete range of time. Thus the Brownian bridge and Gaussian
process are not good candidates for baseline comparisons for our
proposed bridgelets. It may be possible to use simulation to compute
the probabilities, but we did not pursue that approach.

5.4 Error Metric

Our error metric for each test trajectory is the mean absolute error
between the predicted visited probabilities of each cell and the test
trajectory, where the visited cells of the test trajectory take a value
of 1.0. In equation form, the bridge assigns a visit probability p; to
each grid cell j. Each test trajectory consists of a set V of visited
cells. The error is

e= Y (10=pj)+ Y (pj—0.) (4)
JEV Jjev
This essentially says that the visit probability p; should be 1.0 at the
trajectory’s visited cells and 0.0 elsewhere. Note that Appendix A
explains why the visit probability of the bead bridges should be
p=1.0.

5.5 Results

We tested with trajectories from the day after our week of training
data. There were 234,731 such trajectories available. However, only
75,144 had corresponding bridges from our one week of training
data. Recall that a bridge is parameterized by its starting cell, ending
cell, and discrete traversal time. That the training data accounted
for only about 32% of the test data shows that a longer period of
training is ultimately necessary for better coverage.

Our test results are shown in Figure 8. The bars show the median
error metric (Equation 4) over all the test trajajectories for the
proposed method and the two bead baselines. With a median visit
probability error of 2.62, the proposed method clearly outperforms
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(f) Aggregate mean bridge

Figure 5: Visit probabilities of bridges 1-5 were constructed from sampled trajectories (white points) and bridgelets spanning
between the trajectory points. The aggregate visit probabilities in the lower right are the mean of bridges 1-5.

7 easgate

Figure 6: Trajectory data came from this area surrounding
the core of Seattle, Washington USA.

the learned beads (median 40) and elliptical beads (mean 63). We
attribute this to the fact that the proposed bridges are based on
training data and that the visit probabilities are represented by
continuous probability values.

6 CONCLUSION

Because mobility data is often sparsely sampled, it is important to
reason about location behavior between measurements. This paper
proposes a new approach based on maximum entropy bridgelets to
compute probability distributions of likely visit locations between
measurements on a discrete spatial grid. The bridgelets represent

all possible walks between two grid cells for a given traversal time.

Figure 7: This close-up shows the size of the 100 m X 100 m
cells of the Military Grid Reference System (MGRS)

The maximum entropy constraint gives equal probability to all
the walks, properly representing unbiased uncertainty by making
no prior assumptions about which are most likely. Applied to a
measured trajectory, these bridgelets are strung together over the
measurement gaps. For computing visit probabilities and dwell
probabilities, we derive the formulae for combining the probabilities
of the individual bridgelets. Compared to traditional beads, our
experiments show that our bridgelet based approach is much more
accurate at estimating visit probabilities.

Future opportunities for extending this approach include com-
putational efficiency. Computing the bridgelets is intensive, and
there are likely spatial symmetries to exploit that we have not ade-
quately explored. Likewise, training is computationally intensive,
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Visit Probability Error for Bridges
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Figure 8: These bar represent the medians of the sums of
the absolute visit probability errors for three different types
of bridges. The error bars extend from the first to the third
error quartile.

and there are efficiencies to discover to make it faster. It would also
be useful to accommodate bridges that change over time as well as
uncertainty in the location measurements.
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A BEAD BRIDGES SHOULD HAVE VISIT
PROBABILITY 1.0

The two bead baselines consist of bridges with a set of visit prob-
abilities that are all p; = p = 1.0 everywhere a visit could occur
(basic bead) or has a non-zero probability in our proposed bridges
(learned bead). A natural question is whether p should be some
other value in [0, 1] to minimize the error metric for a more fair
comparison to our proposed bridges. We will show next that p = 1.0
is the only reasonable value.

trajector bridge error per
set name set J Y probabil- p
value . cell
ity
true
N B 1 1-
positives v P P
fal
ase VB 1 0 1
negatives
false ,
i V'NnB 0 P P
positives
true v nB 0 0 0
negatives

Table 4: These are the types of errors for the bead bridges.

The cells visited by the test trajectory are in a set V, and these
are given a value of 1.0 in the error metric. The bridge cells are
in a set B. The cells not in the trajectory and bridge are V’ and
B’, respectively. The sets making up the error metric and their
associated per-cell errors are shown in Table 4.

The error metric for the bead bridges is then

€bead = Z (1-p)+ Z 1+ Z P
jEVUB jEVUB  jeV'UB

=|VUB|(1-p)+|VUB'|+|V'UB|p (5)

=([V'UB|-|VUB|)p+|VUB|+|VUB|

=(IV'UB| - |VUB)p+|V]|

From Equation 5, the error metric varies linearly with the bridge’s

visit probability p with a slope of |V/UB|—|VUB|.If |[V'UB| < |VUB],
then the slope is negative, so p should take on its maximum value
of 1 to minimize the error. If |V’ U B| > |V U B|, then the slope is
positive, so p should take on its minimum value of 0 to minimize
the error. However, p = 0 effectively deletes the bridge and gives
no information, so p = 1 is the only reasonable choice for the bead
bridges.
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